

Exercise 1. Consider the function

$$u(x) = \frac{1}{(1+x^2)^{\frac{\alpha}{2}} \log(2+x^2)} \quad x \in \mathbb{R},$$

where $0 < \alpha < 1$. Show that $u \in W^{1,p}(\mathbb{R})$ for all $\frac{1}{\alpha} \leq p \leq \infty$ but that $u \notin L^q(\mathbb{R})$ for all $0 < q < \frac{1}{\alpha}$.

Exercise 2. Let $-\infty < a < b < \infty$ and $AC([a, b])$ be the set of absolutely continuous functions on $[a, b]$. Recall that $u \in AC([a, b])$ if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that, for all $a \leq a_1 < b_1 < a_2 < b_2 < \dots < a_m < b_m \leq b$, we have

$$\sum_{i=1}^m |b_i - a_i| < \delta \implies \sum_{i=1}^m |u(b_i) - u(a_i)| < \varepsilon.$$

Show that $W^{1,1}(]a, b[) \subset AC([a, b]) \subset C^0([a, b])$.

Remarque 1. The first inclusion is actually an inequality, but this is harder to prove.

Exercise 3. 1. Let $u \in W^{1,p}(]0, 1[)$ with $1 < p < \infty$. Show that if $u(0) = 0$, then $x \mapsto \frac{u(x)}{x} \in L^p(]0, 1[)$ and that

$$\int_0^1 \frac{|u(x)|^p}{|x|^p} dx \leq \left(\frac{p}{p-1} \right)^p \int_0^1 |u'(x)|^p dx.$$

2. Conversely, assume that $u \in W^{1,p}(]0, 1[)$ with $1 \leq p < \infty$ and that $x \mapsto \frac{u(x)}{x} \in L^p(]0, 1[)$. Show that $u(0) = 0$.

3. Let $u(x) = \frac{1}{1 + \log(\frac{1}{x})}$. Check that $u \in W^{1,1}(]0, 1[)$, $u(0) = 0$, but $x \mapsto \frac{u(x)}{x} \notin L^1(]0, 1[)$.

Exercise 4. Let $\Omega \subset \mathbb{R}^d$ be an open subset. For all $u \in L^1(\Omega)$, we define the variation of u in Ω by

$$V(u, \Omega) = \sup \left\{ \int_{\Omega} u \operatorname{div}(\varphi) dx : \varphi \in C_c^1(\Omega, \mathbb{R}^d), \|\varphi\|_{L^{\infty}(\Omega)} \leq 1 \right\}.$$

The space of functions of bounded variation (BV functions) is defined by

$$\operatorname{BV}(\Omega) = L^1(\Omega) \cap \{u : V(u, \Omega) < \infty\}.$$

1. Show that $W^{1,1}(\Omega) \subset \operatorname{BV}(\Omega)$.

2. Let

$$H(x) = \begin{cases} 1 & \text{for all } 0 < x < 1 \\ 0 & \text{for all } -1 < x \leq 0. \end{cases}$$

Show that $H \in \operatorname{BV}(] -1, 1[)$ but that $H \notin W^{1,1}(] -1, 1[)$.

3. Let

$$u(x) = \begin{cases} x \sin\left(\frac{\pi}{4x}\right) & \text{for all } 0 < x \leq 1 \\ 0 & \text{for all } -1 \leq x \leq 0. \end{cases}$$

Show that $u \in C^0([-1, 1])$ but that $u \notin \operatorname{BV}(] -1, 1[)$.

Remarque 2. This space can be used in an alternative construction of a solution of the problem of Plateau (it is particularly suitable in higher dimension).